ماتریس های نهایتاً نمایی نا منفی و کاربردهای آن

thesis
abstract

ساختار ماتریس های نمایی eta‎ به صورت یک سری‎ است. هدف اصلی پایان نامه، بررسی ماتریس ‎eta می باشد. به خصوص این که چه موقع eta نامنفی یا مثبت است. یعنی ‎a ‎ چه باشد تا eta نامنفی و یا مثبت باشد. در این پایان نامه ماتریس نهایتاً نامنفی (مثبت) را معرفی و خاصیت پرون فروبینیوس برای ماتریس ها را بررسی کرده و ارتباط آن ها با مجموعه های pfn‎ و wpfn‎ را مشاهده می کنیم. همچنین ماتریس های نهایتاً نمایی نامنفی(مثبت) را مورد بررسی قرار می دهیم و به خصوص اثبات می کنیم که ماتریس های نمایی نامنفی(مثبت) و اساساً نامنفی(مثبت) معادل هستند. علاوه بر این، روش لئونارد را برای بدست آوردن eta معرفی می کنیم. کلمات کلیدی‎: ‎ماتریس های نهایتاً نامنفی، ماتریس های نمایی نامنفی، نقاط با پتانسیل نامنفی، پرون فروبینیوس ،‎ ماتریس متزلر‎، مخروط محدب .

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

ماتریس نمایی در فیزیک

در این مقاله پس از معرفی تابع نمایی، ماتریس نمایی را بیان خواهیم کرد. در ادامه ضمن بیان ویژگی هایی از ماتریس نمایی، چند روش محاسبه آن را به اختصار شرح می دهیم. سپس کاربردهایی از ماتریس نمایی در فیزیک بیان می شود.

full text

مسئله مقدار ویژه معکوس ماتریس های نا منفی متقارن

در این پایان نامه در ابتدا مشخص ساز ی اثر صفر برای ماتریس های نا منفی متقارن از مرتبه پنج را مطرح کرده و در ادامه به مسئله وجود و ساختار ماتریس های نامنفی متقارن با طیف حقیقی می پردازیم همچنین مسئله مقدار ویژه معکوس برای ماتریس ها ی نا منفی متقارن از مرتبه 2 تا 6 را که از مسائل پیچیده در جبر خطی عددی بوده است مطرح کرده و این گونه مسائل را حل می کنیم. حل مسئله مقدار ویژه معکوس برای ماتریس های نا...

15 صفحه اول

ماتریس حسابداری اجتماعی مالی ایران و کاربردهای آن در اقتصاد

هدف این مقاله سنجش آثار جریان‌های مالی بر بخش واقعی اقتصاد ایران است. یکی از الگوهای قابل استفاده برای سنجش این آثار، الگوی ماتریس حسابداری اجتماعی مالی است. در این راستا، سوال اساسی پژوهش این است که بسط جریان مالی در چارچوب ماتریس حسابداری اجتماعی چگونه ضرایب فزاینده تولید را تحت تاثیر قرار می‌دهد؟ برای این منظور با استفاده از ماتریس حسابداری اجتماعی (SAM) ایران در سال 1378و ماتریس حسابداری اج...

full text

ماتریس نمایی در فیزیک

در این مقاله پس از معرفی تابع نمایی، ماتریس نمایی را بیان خواهیم کرد. در ادامه ضمن بیان ویژگی هایی از ماتریس نمایی، چند روش محاسبه آن را به اختصار شرح می دهیم. سپس کاربردهایی از ماتریس نمایی در فیزیک بیان می شود.

full text

مشخص سازی هایی از ماتریس های جمعا نا مثبت(جمعا منفی)

یک ماتریس حقیقی مرتبه ی ‎ ‎‏،‎‎ ‎ جمعاً نامثبت (جمعاً منفی)‎‎ نامیده می شود هرگاه هر مینور آن نامثبت (منفی) باشد‎. در این تحقیق مشخص سازی هایی از این رده های ماتریسی به وسیله ی مینورها‏، به وسیله ی تجزیه ی رتبه کامل آن ها و به وسیله ی تجزیه ی ‎‏ باریک آن ها ارائه ‏می شود.

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه شهید باهنر کرمان - دانشکده ریاضی و کامپیوتر

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023